Climatological determinants of woody cover in Africa.

نویسندگان

  • Stephen P Good
  • Kelly K Caylor
چکیده

Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Green Sahara Periods and Their Role in Hominin Evolution

Astronomically forced insolation changes have driven monsoon dynamics and recurrent humid episodes in North Africa, resulting in green Sahara Periods (GSPs) with savannah expansion throughout most of the desert. Despite their potential for expanding the area of prime hominin habitats and favouring out-of-Africa dispersals, GSPs have not been incorporated into the narrative of hominin evolution ...

متن کامل

Change in woody cover at representative sites in the Kruger National Park, South Africa, based on historical imagery

BACKGROUND The coexistence of woody vegetation and grass is a key characteristic of savanna ecological balance. Gains in woody vegetation at the expense of grass can lead to changes in grazer and browser carrying capacities on the savannas. This study examined long-term change in woody cover at four study sites representative of the geology and rainfall in the Kruger National Park, South Africa...

متن کامل

Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

The Upper Guinea Forest (UGF) region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We c...

متن کامل

Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas

With grasslands and savannas covering 20% of the world's land surface, accounting for 30-35% of worldwide Net Primary Productivity and supporting hundreds of millions of people, predicting changes in tree/grass systems is priority. Inappropriate land management and rising atmospheric CO2 levels result in increased woody cover in savannas. Although woody encroachment occurs world-wide, Africa's ...

متن کامل

Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa – Lidar results

People in the rural, communal areas of South Africa rely on live fuel wood for more than 90% of their energy requirements. Using airborne lidar from the Carnegie Airborne Observatory (CAO) we compared tree canopy cover and height distributions between communal landscapes with heavy utilization to fully protected public and private reserves in the Lowveld of South Africa. Rangelands and fields i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 12  شماره 

صفحات  -

تاریخ انتشار 2011